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Abstract

Knowledge integration includes knowledge management, synthesis, and translation processes. It 

aims to maximize the use of collected scientific information and accelerate translation of 

discoveries into individual and population health benefits. Accumulated evidence in cancer 

epidemiology constitutes a large share of the 2.7 million articles on cancer in PubMed. We 

examine the landscape of knowledge integration in cancer epidemiology. Past approaches have 

mostly used retrospective efforts of knowledge management and traditional systematic reviews 

and meta-analyses. Systematic searches identify 2,332 meta-analyses, about half of which are on 

genetics and epigenetics. Meta-analyses represent 1:89-1:1162 of published articles in various 

cancer subfields. Recently, there are more collaborative meta-analyses with individual-level data, 

including those with prospective collection of measurements [e.g., genotypes in genome-wide 

association studies (GWAS)]; this may help increase the reliability of inferences in the field. 

However, most meta-analyses are still done retrospectively with published information. There is 

also a flurry of candidate gene meta-analyses with spuriously prevalent "positive" results. 

Prospective design of large research agendas, registration of datasets, and public availability of 

data and analyses may improve our ability to identify knowledge gaps, maximize and accelerate 

translational progress or—at a minimum—recognize dead ends in a more timely fashion.

Introduction

Given the rapid expansion of scientific information, there is a critical need to ensure that 

maximal use is made of the collected data in a most efficient and unbiased way. "Knowledge 

integration" describes the processes that aim at effective use of information from many 

sources for accelerating translation of scientific discoveries into clinical applications, 
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evidence-based recommendations, use in practice, and eventually health benefits for 

individuals and populations (Fig. 1). The term has been used with different definitions and 

perspectives (1–3), but here we adopt the definition that includes knowledge management 

(KM), knowledge synthesis (KS), and knowledge translation (KT; ref. 1). These 3 processes 

can inform the continuum of translational research from discovery to population health 

impact (1). The knowledge integration engine can drive research progress, especially in 

data-intensive fields.

Previously, knowledge integration has depended mostly on retrospective efforts of horizon 

scanning, traditional systematic reviews and meta-analyses, and nonsystematic knowledge 

brokering between stakeholders. These efforts may be inadequate in the current era of rapid 

accumulation of multilevel information—from molecular to the macro-level of 

environmental exposures and health system attributes. Revamping the current knowledge 

integration processes may help drive the future of cancer epidemiology across the 

translational research continuum. Here, we overview the accumulated experience on 

knowledge integration with emphasis on cancer epidemiology. We discuss what methods 

have been used over time, their strengths and limitations, and what alternative approaches 

might lead to more efficient integration of emerging information.

Published information on cancer

PubMed (search August 27, 2012) lists 2,673,926 articles with the search on "cancer," of 

which more than three quarters (n = 2,146,156) are tagged with "human." Table 1 shows 

selective subsets that present an overall picture of published evidence for different types of 

designs relating to cancer epidemiology. More than 50,000 articles are identified with the 

search word "cohort," and slightly more with "case control," whereas the term "risk" 

retrieves more than 200,000 articles, and "biomarker" just as many. At the same time, there 

are also more than 100,000 clinical trial publications, many of which are randomized trials. 

Efforts to synthesize this information are represented by more than 6,000 meta-analyses, 

almost 30,000 systematic reviews, and more than 300,000 nonsystematic reviews. Thus, 

most efforts at evidence integration still use subjective opinion and nonsystematic methods 

for data overview and interpretation.

It is difficult to accurately separate the literature on associations from the literature on 

treatments and interventions—sometimes they intermingled in the same article. Subsets 

searches in Table 1 should be reviewed with caution given the non-perfect sensitivity and 

specificity of PubMed searches. However, clearly articles with relevance to treatment far 

outnumber articles with relevance to prevention across all subsets. Table 1 also provides 

search results with the string "NOT (trial* OR treatment)" to further exclude articles on 

clinical trials and treatmentrelated research (which can be either randomized or 

observational, e.g., predictive tools for treatment response). As shown, studies with "cohort" 

or "case control" are split between the literature with and without trials/treatment 

implications.
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Knowledge management: studies, data, analyses

KM efforts can take many different forms, depending on whether one is tapping into 

published information; retrieving unpublished information; developing databases with raw 

data; or allowing a live stream of all collected data and analyses (Table 2). Published 

information is only a fraction of the total raw data that have been collected for or repurposed 

for research purposes and of the analyses that have been formally conducted, probed, or 

contemplated (4).

Efforts of KM for published data concentrate usually at search optimization, curation, 

cleaning, and harmonization. Published data may often be a selected, even distorted, subset 

of the whole information chosen based on statistical significance and/or other selection 

filters (5). Although some journals have begun efforts to publish "null" results (6, 7), these 

remain underrepresented in the published literature. If so, KM targeting past published data 

may yield largely misleading results. Empirical meta-research evaluations on the credibility 

of research findings in different research fields and with different methods and technologies 

may help anchor some credibility estimates. They may help decide whether a field is 

severely biased that it is a wasteful effort to collect, clean, and use published information. 

Conversely, the KM process may indicate that a systematic synthesis can indeed yield 

reliable results.

Unpublished data and analyses results are notoriously difficult to unearth. Some 

investigators may claim that unpublished data can be ignored, as they have not passed peer 

review. However, the seal of peer review is not a perfect discriminant. Registration of 

protocols and analyses would have helped to understand the depth of the problem. 

Nevertheless, publication of these documents is limited. For example, it is well documented 

that many clinical trials protocols and/or analyses are never published. Of those that are 

published, half or more of the originally considered outcomes are not reported, whereas 

many others are reported with analyses and results that deviate from the originally intended 

analyses (8–10). For observational epidemiology, these problems are probably more 

common (11). However, a priori registration of protocols is difficult for such studies, given 

their exploratory and iterative nature. Instead, it has been argued that registration should 

focus on study datasets (4, 12), that is, information on what variables have been collected 

and measured. This allows an understanding and assessment how many registered datasets 

could have undergone specific analyses.

Public deposition of raw datasets has attracted increasing attention over time, with several 

successful efforts for laboratory research, for example, genomic sequencing databases and 

functional databases (13). For microarray, macromolecular, and protein data, most high-

impact journals have policies that require delineating some plan of making raw data, 

protocols, and analysis codes publicly available, routinely or after request to the authors; 

public deposition of such information is often a prerequisite for publication, but these 

policies are not necessarily enforced (14, 15).

There are several challenges related to deposition of raw datasets (Table 2). Some datasets 

may be deposited with poor documentation that hinders their usage by an outsider or may 

lead to erroneous data readings and misleading inferences. In addition, some public 
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databases have minimum requirements when depositing data. Even if investigators are 

required to adhere to data-sharing policies (either from funding agencies or journal 

requirements), they often enter the minimal amount of required information. There are 

different modes of data access: open-to-all, cursory approval–based, and access to select 

investigators passing stringent standards of recognized expertise. Striking a balance between 

credit and independence is also challenging. Original investigators could (or should) be 

credited for analyses conducted on their data. However, it may also be advisable to keep 

further analyses separate from them: subsequent investigators who then use these published 

data should feel free to repeat and challenge the original analyses.

Finally, the live stream information model suggests that data, protocols, and analyses are 

readily available and visible to a wider circle, even the full public, as they accumulate, 

change, and evolve. This practice has been piloted in experiments trying to replicate the 

finding of bacteria with arsenic-containing DNA (16). Other fields, including cancer 

epidemiology, may also learn from it.

Knowledge synthesis of same-level information

There is a wide variety of KS methods (Table 2), but systematic reviews and meta-analyses 

are the most common. The majority of such reviews still depend on published information. 

Meta-analyses of published data are popular in many disciplines, especially those where 

unadjusted estimates and plain 2 × 2 tables are convenient. Some efforts may also be made 

to retrieve and include unpublished information, but success in this endeavor varies. For 

fields where there are many meta-analyses, field synopses have emerged (17) with 

simultaneous compilation of tens to millions of meta-analyses on the same field, as in 

several examples of applications in human genome epidemiology, for example, AlzGene, 

SzGene, and PDGene (18–20).

Other KS efforts involve investigators who control existing primary data. Such collaborative 

meta-analyses use a central secretariat to collect, query, clean, and synthesize individual-

level data or statistics derived from individual-level data analyses procured by the original 

investigators of each included study. The advantages (potential standardization or 

harmonization of data and analyses, consistency of adjustments, multivariable models, 

interactions, and other complex models) and disadvantages (cost, effort, inability to fully 

standardize post hoc, selective availability of information, political difficulties) of this 

approach versus meta-analyses of the published literature have been extensively discussed 

previously (21, 22).

There is increasing interest in collaborative meta-analyses that use prospectively collected 

measurements from existing studies. This is the dominant paradigm in meta-analyses of 

GWAS (23, 24) that have led to a massive increase in the number of discovered genetic 

variants with strong statistical support (25). These meta-analyses may avoid the potential for 

selective reporting bias that threatens collaborative meta-analyses of previously collected 

data. Consortia working in this framework are common in human genome epidemiology but 

less common in other fields. Finally, one can envision prospective meta-analyses, where not 

only specific measurements but also the primary studies are designed prospectively, with the 

plan to eventually combine them. Such examples currently exist mostly from randomized 
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trials (26). Nevertheless, the concept can conceivably be applied to future designed case–

control studies, cohort studies, and biobanks (27), with prospective standardization of their 

designs and data collection and analyses procedures (28).

Landscape of KS methods used in cancer epidemiology

Table 3 shows the landscape of practiced KS methods for the PubMed subset of "Cancer 

NOT (trial* OR treatment)". The large majority of systematic reviews (85.5%) and all but 

13 meta-analyses addressed human data. More effort is needed to systematically appraise 

evidence from animal studies (29, 30), which can be informative and influential for judging 

biologic plausibility and for other preclinical inferences.

The fields of genetics or epigenetics dominate almost a third of the literature. 

Correspondingly, the same distribution applies to systematic reviews, whereas these 2 

disciplines account for about half of the existing meta-analyses. The literatures on 

biomarkers, hormones, and infectious agents are extensive but have relatively fewer meta-

analyses (n = 51–109 in each). Conversely, other concentrations with smaller shares of the 

total literature instead have as many or more published meta-analyses, in particular smoking, 

occupational, and nutritional fields.

The number of systematic reviews is 2- to 3-fold larger than the number of meta-analyses in 

most areas, except for biomarkers, immune/allergy/asthma, and social/socioeconomic 

factors, where the ratio is even larger. This may reflect the difficulty of conducting 

quantitative syntheses (e.g., for social and socioeconomic factors with extreme heterogeneity 

of definitions and measurements) or less established traditions for conducting meta-analyses. 

The ratio of all published articles per published meta-analysis is 556 overall; despite their 

emerging popularity, metaanalyses are still a small portion of the literature. Moreover, there 

is large variability in this ratio across different fields. It is smaller [n (all)/n (MA) = 89–133] 

for smoking, occupational, nutritional, and lifestyle areas; modestly high [n (all)/n (MA) = 

215–350] for alcohol, social, genetics, carcinogens, and radiation; and very high [n (all)/n 

(MA) = 728–1,162] in epigenetics, biomarkers, immune factors, hormones, and infectious 

agents.

A more detailed examination of a sample of meta-analyses published in 1992, 2002, and 

2012 shows the evolution of the application of these methods over time. "Cancer NOT 

(trial* OR treatment) AND meta-analysis [type]" yields 25 items in 1992, 49 in 2002, and 

232 in the first 8 months of 2012 alone. On closer examination, 20 of the 25 meta-analysis–

tagged articles published in 1992 are indeed meta-analyses related to cancer epidemiology, 

and the same applies to 44 of 49 tagged articles in 2002 and 50 of the 53 latest indexed 

articles in 2012.

Besides the geometric increase in the number of published meta-analysis articles each year, 

the areas represented have changed over time. The advent of metaanalyses on genetics and 

epigenetics is impressive. In 1992, there was only one quantitative review on leukemia 

cytogenetics. In 2002, of the 44 meta-analyses, 8 (18%) assessed genetic variants, 1 (2%) 

genomic hybridization, and 1 (2%) microarrays. In 2012, of the 50 most recently indexed 

published meta-analyses, 25 (50%) were on genetic variants, 2 (4%) on epigenetics, and 
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another one on gene–menopause interaction. No other field in 2012 had such staggering 

increase in the number of meta-analyses (smoking, n = 3; alcohol, n = 3; biomarkers, n = 2; 

infectious agents, n = 2; dietary, n = 2; social, n = 1; occupational, n = 1; diagnostic tests, n 

= 3, other, n = 3 among 50 meta-analyses examined).

Moreover, there have been an increasing number of genes and genetic variants examined in 

meta-analyses over time. All genetic meta-analyses in 2002 focused on specific genes. 

Conversely, meta-analyses in 2012 included also genome-wide association meta-analyses, 

consortium analyses examining a number of variants, and field synopses. There is also a 

discernible change in the types of meta-analyses conducted over time, in particular about the 

use of consortium approaches and use of individual-level data (31). In the examined 

samples, there were 2 meta-analyses using individual-level data in 1992 (among 20), 5 in 

2002 (among 44), and 9 among the most recent 50 meta-analyses in 2012. All the meta-

analyses with individual-level data in 1992 and 2002 combined information that had been 

already collected in existing studies. One meta-analysis combined data from publicly 

available data on microarray experiments, whereas all the other meta-analyses created 

collaborative structures where investigators contributed their data and participated in the 

final manuscripts. These analyses pertained to nutritional factors (n = 4), hormones (n = 1), 

or smoking and alcohol (n = 1). Conversely, in 2012, the 9 meta-analyses using individual-

level data targeted a very different set of risk factors: genetic factors (n = 6), gene expression 

data (n = 1), biomarkers (n = 1) and endometriosis (n = 1). The 6 meta-analyses of genetic 

factors were done by consortia conducting with genotype data generated prospectively for 

the project. The gene expression meta-analysis used data from publicly available databases, 

and the other 2 meta-analyses were done by investigators contributing previously collected 

data.

Caveats in current meta-analyses in cancer epidemiology

Despite the increase in the number and proportion of meta-analyses with individual-level 

data over time, these still represent the minority. Most currently published metaanalyses in 

cancer epidemiology continue to depend on published summary data. Many of these meta-

analyses focus on genetic variants, often targeting a single or a few candidate genes and 

variants thereof. Interestingly, among the 50 published meta-analyses from 2012, 12 were 

done in China focusing on specific candidate genes from the era preceding GWAS. With 

one exception (32), all of these Chinese meta-analyses concluded that the examined 

candidate genes are significantly associated with the phenotypes of interest, although the P 

values were always very modest. On the basis of previous experience on candidate gene 

associations (33, 34), the credibility of these associations is very low. Another 3 meta-

analyses from China addressed genetic variants previously highlighted from GWAS and also 

included primary data that the authors generated in their own sample and claimed replication 

of the genetic effects. Including also other fields beyond genetics, overall, 19 of the 50 

(38%) meta-analyses in 2012 were from China and 17 of these 19 concluded with 

significant, favorable results. Previous empirical evaluations suggest that studies from China 

in different fields have frequent or even ubiquitous "positive" findings (35, 36).
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The very high prevalence of "positive" meta-analyses, at the face of what should be mostly 

null associations, is worrisome. Apparently automation has allowed the massive production 

of potentially unreliable meta-analyses. The problem seems to be most acute for genetic 

epidemiology, which carries a lion’s share in currently published meta-analyses, but may 

extend also in other disciplines.

Knowledge synthesis: multiple-level information

Besides KS involving the same type of information combined across different studies, KS 

may also try to synthesize multiple levels of information and/or simulated rather than real 

data. Cross-design synthesis approaches can combine data from different types of designs 

and umbrella reviews try to compile information on different aspects of questions of interest, 

for example, incidence, prevalence, associations, predictive performance, and clinical 

treatment effects, if pertinent (37). The IARC monographs combine basic and epidemiologic 

data to arrive at a systematic approach to classification of carcinogens (38). The HuGENet 

Venice criteria attempt to do this for genetic associations (39) and Boffetta and colleagues 

recently proposed a merging of IARC monograph and Venice methods appraising evidence 

on gene–environment interactions (40).

As knowledge progresses from discovery to health-related applications, mixed methods 

become increasingly used to examine the evidence of validity and use of the information. 

Examples of KS using a mixture of methods for more advanced translation steps include the 

US Preventive Services Task Force documents for clinical preventive services (41) such as 

prostate and breast cancer screening (T2 translation stage, "does it work"), the CDC 

Community Guide for Preventive Services (ref. 42; T3 translation stage, "how does it work 

in community settings"), and CISNet, an NCI-funded consortia that evaluate using modeling 

and empirical data the impact of different interventions on real-world population outcomes 

(T4 translation stage), for example, as in a recent modeling article on contribution of 

screening and survival differences to racial disparities in colorectal cancer rates (43).

Knowledge synthesis: meta-research

Meta-research (research on research) may allow obtaining wide views on evidence 

concerning multiple research questions across one or more fields. It may help understand 

general patterns of study design, reporting, and biases. For example, meta-research 

evaluations have documented the problems of selective reporting and excess significance 

biases in cancer epidemiology studies and their meta-analyses (44–50). One may list here 

also efforts to reproduce published results. Such efforts, ranging from "forensic 

bioinformatics" to "reproducibility checks," have shown major reproducibility problems in 

several research fields such as -omics signatures (51) or preclinical data on drug targets (52).

Knowledge translation: using science to influence research, policy, and practice

KM and KS are not sufficient to move promising applications and interventions into 

practice. KT is a proactive process that involves communicating and disseminating 

synthesized information to influence policy, guideline development, practice, and research 

across the translation continuum. This is the most "messy" component of knowledge 
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integration; it requires the "buy-in" from stakeholders with different perspectives, for 

example, see the recently discussed dissemination and implementation agenda for NIH (53).

Many forces affect the diffusion, adoption, and implementation of evidence-based 

recommendations into policy and practice and often operate independently from KS. They 

include public and private investments in research and development, policy and legal 

frameworks, oversight and regulation, product marketing, coverage and reimbursements, 

consumer advocacy, provider awareness, access, and health care services development and 

implementation. Deverka and colleagues (54) showed that for cancer genomic applications, 

different stakeholders hold disparate views of the synthesized knowledge presented to them. 

For example, payers generally require a higher level of evidence of clinical use than 

genomic researchers or test developers. Issues around differential access and implementation 

may contribute to the "lost in translation" phenomenon (55).

One aspect of KT may involve convening stakeholders around KS to address differences in 

evidentiary thresholds that drive decision making. This convening function of "knowledge 

brokering" links researchers and policy makers to facilitate interactions and forge 

partnerships to use evidence from existing knowledge and define areas for future research. 

In fields with rapidly changing landscape such as cancer genomics, KT knowledge 

brokering may need more robust proactive stakeholder engagement earlier in the decision-

making process rather than later (1).

Conclusions and future prospects

The landscape of knowledge integration in cancer epidemiology has changed substantially 

over time and it continues to change. New methods are used more widely for managing, 

synthesizing, and translating information. Table 4 summarizes some possibilities that may 

enhance knowledge integration efforts in the future.

KM may benefit from more proactive steps rather than waiting to handle selectively 

reported, fragmented published data. Registration of observational datasets (4, 56), more 

systematic availability of raw data and analysis codes (57, 58), facilitation of repeatability 

and reproducibility checks (59), building a replication culture (60), and even consideration 

of live streaming of information may accelerate science, allow prompt recognition of false 

positives and dead ends, and facilitate translation of interesting observations that can be 

repeated and validated. The optimal way and implementation mode to achieve these changes 

needs carefully study.

In KS, the paradigm of large-scale international collaboration with prospective data 

collection has become dominant in human genome epidemiology (29), but it can also 

permeate more broadly many other fields. New epidemiologic studies and biobanks (25) 

may also be designed with the outlook that they will form part of a larger prospective 

network, rather than isolated proprietary experiments. For many diseases and subfields, it is 

possible that their several consortia with overlapping purposes may continue to co-exist. 

This may not necessarily be a drawback, as this may promote competition and independent 

replication across consortia. Regardless, it is important to have wide views of the 

information that is or could become available. This would help avoiding having to fund yet 
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another study when there are hundreds available that can easily address the same question 

(4) or to prioritize studies and data collection in fields where the wider map of global 

evidence seems to have a dearth of data.

Finally, KT could benefit by wider spread and brokering of sound evidence from more 

reliable KM and KS efforts. It may be easier to set upfront goals, expectations, and rules of 

engagement and make all stakeholders aware of them, rather than wait for debates to be 

settled post hoc. A fascinating aspect of science is that not everything can be anticipated, but 

this does not mean that we cannot try to have some upfront planning and more transparency 

in protocols, analysis plans, and results.
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Figure 1. 
The central role of knowledge integration in driving translational research.
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Table 1

Published articles in cancer literature

PubMed Treatment Prevention Not (trial or treatment)

Cancer 2,673,926 1,360,697 208,187 1,295,958

+Animal 481,080 206,009 40,891 269,653

+Cell 1,118,600 510,286 66,935 604,187

+Cohort 53,567 29,808 8,683 22,819

+Case–control 59,248 11,255 5,848 26,973

+Risk 267,490 158,529 58,002 105,276

+Biomarker 204,419 91,298 15,675 111,025

+Clinical trial, type 105,939 93,172 14,807 4,535

+RCT, type 34,449 31,862 8,047 0

+Meta-analysis, type 6,406 3,902 1,153 2,332

+Systematic review, type 28,922 21,398 5,755 6,763

+Review, type 314,176 201,162 39,859 111,234

NOTE: Search strategies: treatment: "treatment", prevention: "prevention OR screening [ti] OR screening [tw]", Not trial or treatment: "NOT 
(trial* OR treatment)."

Abbreviation: RCT, randomized controlled trial.
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Table 2

Different approaches to KM and KS

Knowledge management

 Published data: optimization of search engines, curation
  and cleaning, harmonization

 Unpublished data: detection, registration, cleaning

 Deposition of raw datasets in public: documentation,
  access control, ease of use, credit, independence

 Live stream information

Knowledge synthesis

  Same-level of information

  Systematic reviews of published information

  Meta-analyses of published information

  Meta-analyses including also retrieved unpublished
   data

  Field synopses of many meta-analyses

  Collaborative meta-analyses of previously collected
   individual-level data

  Collaborative meta-analyses of prospectively collected data from
   existing studies

  Prospective consortia and meta-analyses thereof

  Multiple levels of information

  Cross-design synthesis and multilevel evidence
   appraisals

  Modeling with real or simulated data

  Meta-research (research on research)
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Table 3

Systematic reviews and meta-analyses in different fields of cancer (excluding trials and treatment)

Search terms All articles, N (all) n (SR) n (MA) n (SR)/n (MA) n (all)/n (MA)

Gene/genome/genetic 268,597 1,999 920 2.2 291

Epigenetic/methylation/mutation 115,763 497 159 3.1 728

Immune/allergy/asthma 29,046 107 25 4.3 1162

Hormone 53,679 148 51 2.9 1,032

Social/socioeconomic 11,531 224 50 4.5 231

Diet/dietary/nutrition/nutritional 19,549 289 147 2.0 133

Physical activity/exercise/obesity 8,919 192 74 2.6 121

Virus/bacteria/infection/infectious 88,881 331 109 3.0 815

Carcinogen 30,286 201 88 2.3 344

Radiation 30,124 229 86 2.6 350

Occupation/occupational 16,839 344 177 1.9 95

Smoking/smoke/tobacco 20,660 413 232 1.8 89

Alcohol 17,921 170 83 2.0 215

Biomarker 72,709 373 97 3.8 750

NOTE: On the basis of PubMed searches conducted on August 29, 2012. The search resulted in 1,295,958 items overall, of which 6,763 were 
tagged by PubMed as systematic reviews and 2,332 as meta-analyses; when limited to studies tagged as human, there were 941,360 items overall, 
5,780 systematic reviews, and 2,319 meta-analyses. All searches use as a backbone the search strategy "Cancer NOT (trial* OR treatment)" so as to 
avoid capturing articles on clinical trials and treatments. Some articles from case-control and cohort studies where treatment or treatment-related 
questions are discussed would be excluded by this strategy, but this latter group accounts generally for few meta-analysis, for example, a search 
with "Cancer AND (trial* OR treatment) AND (case-control or cohort) AND meta-analysis [type]" yields an additional 451 items (besides the 
2,332 identified with "Cancer NOT (trial* OR treatment) AND meta-analysis [type]"); in a sample of 20 of the 451, only 10 are related to cancer 
epidemiology. Conversely, in detailed scrutiny of a sample of 127 items, among those identified with the search "Cancer NOT (trial* OR 
treatment) AND meta-analysis [type]", 114 are indeed meta-analyses of cancer epidemiology topics (positive predictive value 90%). Thus, the 
provided estimate of 2,332 metaanalysis articles in cancer epidemiology seems to be quite accurate, with <250 falsely identified articles and 
roughly equal number of falsely nonidentified articles. All searches in the table, with the exception of Gene/Genome/Genetic and Epigenetic/
Methylation/Mutation, use the string "NOT (Gene OR Genome OR Genetic)", so as to exclude items that deal primarily with genetics, for example, 
immune response genes or hormone-related genes.

Abbreviations: N (all), total number of articles retrieved; n (SR), number of articles retrieved with type: systematic review; n (MA), number of 
articles retrieved with type: meta-analysis.
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Table 4

Suggestions for the future of knowledge integration

Knowledge management

 Methods for mining published and unpublished data

 Registration of observational datasets and, when
  appropriate, protocols

 Availability of raw data and analysis codes

 Facilitation of repeatability and reproducibility checks,
  replication culture

 Consideration of live stream information

Knowledge synthesis

 Facilitation of consortia with prospective measurements

 Optimization of multiconsortial space, competition, and
  communication

 Prospective study networks

Knowledge translation

 Anticipatory rather than post hoc brokering
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